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Literature: any decent Statistical Mechanics textbook

1 Spin susceptibility of free electrons
Relativistic quantum field theory predicts that electrons carry a spin S = 1/2. Associated with
the spin is a magnetic dipole moment, which can have values +µ0, −µ0 for the spin states ↑, ↓.
Consider a non-interacting electron gas with single-particle energies ελ,↑ = ελ,↓, equal for both spin
directions in absence of a magnetic field (Think why!). Now we assume that a small magnetic
field B = (0, 0, B) is switched on. Furthermore, we assume that this field interacts only with the
magnetic dipole moment of the spins, not with the orbital motion of the electrons. This means we
neglect the Lorentz force.

(a) What is the change in the single-particle eigenvalues ελ,σ, σ =↑, ↓, after B is switched on?

(b) Motivate the definition of the magnetization’s

Mz = µ0

∑
λ

[nF(ελ,↑ − µ)− nF(ελ,↓ − µ)] , (1)

for non-interacting particles, where nF denotes the Fermi function and µ (not µ0) is the chemical
potential.

(c) Dimensional analysis: The spin susceptibility χ = ∂M
∂B

∣∣
B=0

describes how the magnetization
reacts to an external field. Argue, that at zero temperature, the susceptibility has to be
proportional to µ2

0/E, where E has the dimension of energy. List a few candidates for the
(until now unknown) quantity E (cohesive energy, Debye energy etc.). Think about the only
reasonable correct answer!

(d) Calculate Mz in leading order of B and in the limit of T → 0. Derive the zero-temperature
limit of χ!

(e) Discussion, but no calculation! Review the leading correction from the Sommerfeld expansion
and discuss the terms from the view of the dimension analysis. For typical metals, are these
corrections small/large and why?

(f) Optional: The above calculation tacitly ignored the spin-orbit coupling. What would change in
the formula (1) if we doing it right?
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In the next two problems, we shall explore the temperature dependencies of observables in an ideal
Bose gas of spin-less particles. Use the continuum form of the grand-canonical potential

Ω = kT

∫ ∞

0
N(ε) ln

[
1− e−(ε−µ)β

]
dε (2)

where N(ε) denotes the (single particle) density of states.

We will assume two forms of N(ε):

– For particles with a quadratic dispersion (in three dimensions) N(ε) = V b
√
ε (it can be

calculated easily); V is the volume and b a constant. Examples: atoms in a gas, ferromagnetic
magnons.

– For particles with a linear dispersion; N(ε) = V b′ε2. Examples: acoustic phonons, photons,
antiferromagnetic magnons.

2 Thermodynamics of free bosons: parabolic dispersion

(a) Plot the Bose-Einstein distribution function for a finite T . What are the allowed values of µ?

(b) Certain class of bosons has a vanishing chemical potential. These are phonons, but also atoms
in a Bose-Einstein condensation (BEC), to be discussed in detail at the end of the semester.
Convince yourself, that the integrand [Eq. (2)] is well defined in the limit ε → 0+ when µ = 0.
Show, that the grand-canonical potential can be written in the form Ω = aV T 5/2, where a is
independent of T .

(c) Using the previous result, give the temperature dependence of the entropy and heat capacity
cV (T ). Show, that the pressure (P = −Ω/V ) is volume-independent.
Remark: this is the temperature dependence of ferromagnetic magnons, for example

3 Thermodynamics of free bosons: linear dispersion
The calculation of thermodynamic quantities for a linear dispersion proceeds analogously as with
the parabolic dispersion.

(a) Repeat the previous problem to verify, that cV (T ) ∝ T 3 for a linear dispersion. Discuss: Lattice
contribution to the specific heat of a solid.

(b) For µ = 0, it holds that Ω = U − TS, where U is the internal energy. Show, that U(T ) ∝ T 4.
Discuss the Stefan-Boltzmann law.


